Thetheory of elastic beams and its finite e ement implementation
By J. F. Besseling

Summary

After the creation of the theory of elasticity by Cauchy, published in 1822, St.Venant
developed the theory of tension, bending and torsion of beams based upon this theory
of elasticity. The main results were published in 1855 and 1856.

Though the equations of the theory of elasticity were linearized, the results obtained
by St.Venant for the stressdistribution and the stiffness properties remain valid for
large displacements and large relative rotations as long as the local strains of abeam
remain small. For materials used in structures, that may not be |oaded beyond the
elastic limit of the material, this condition is satisfied.

A brief account isgiven of the theory of the elastic line, applicable for the description
of the mechanical behaviour of slender beams. This nonlinear theory has been applied
to the stability analysis of rods and beams in its continuum mode. Thus a bifurcation
point in the load-deformation relation of the geometrical perfect and physically
homogeneous rods and beams under certain loadings could be established.

The column buckling, first studied by Euler (1744) before the creation of the
mathematical theory of elasticity, wastogether with the general problem of elastic
stability fully understood at a much later date (Koiter 1945).

Though the results, obtained with the continuum model of the elastic line, remained
limited to the determination of the behaviour in the neighbourhood of the bifurcation
point and to the analysis of the important effects of small imperfections, the finite
element model now makes areadlistic simulation of large displacements and rotations
of elastic rods and beams a matter of straightforward desk computations. The type of
finite element model, proposed by the author in 1981 [5], is eminently suitable for
these computations and is therefore once again defined in this paper.

1. Stiffness propertiesand stressdistribution of prismatic beams.

The theory of St.Venant determines the stresses and deformationsin a prismatic
beam, made of an isotropic, linearly elastic material. The results are valid for beams
of arbitrary length, but the loaddistributions at the ends of the beam follow from these
results. The fact that actual loading of beamsin structures will differ from the
loaddistributions, dictated by St.Venant’s solution of the problem, will however only
affect the situation close to the ends of the beam, provided its cross-section is
sufficiently solid. For beams with thin-walled, open cross-sections the disturbance due
to non-conforming loaddistributions will propagate over a great length of the beam.
But in al other cases the principle of St.Venant of elastic equivalence of statically
equipollent systems of load isvalid.



Fig.1 Prismatic beam, coordinate system and displacements.

In terms of the coordinate system shown in Fig.1, we shall give the results of
St.Venant’s solution. We have added the finite element solution of the warping
displacements, that have to be determined for each shape of cross-section. In
St.Venant’s solution awarping displacement function of the cross-sectiona
coordinates has to satisfy a second order partial differential equation with an
appropriate boundary condition.

The displacement components of a point of across-section at a coordinate x are given
by the following expressions. The displacements, that |eave the beam undeformed, are
represented by the three trandations, u,,Vv,, w,, and by the three (small) rotations,
&y.¥s X, - The two independent elasticity constants of the isotropic material are
represented by the shear modulus G and Poisson’ s ratio v. The warping displacement
of the cross-section isgiven by u,,.
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The expression for u,, consists of an unknown function of the section coordinates and
an additional function of these coordinates in case Poisson’sratio v is unequal to zero.

U, = X(Y,2) +55 (R BY + % BYZ + %yZ + %, yy’2) 2

Since plane cross-sections of a beam generally do not remain planein St.Venant's
solution, obviously this solution can berigidly valid only if the warping of the cross-



section is not hampered at the ends of the beam. In structures thiswill be seldom the
case, but just for this reason the above mentioned principle of St.Venant isso
important for practical applications of the stiffness properties of beams, derived from
his solution of the beam deformation problem.

From the expressions for the displacement components we derive the results for the
straincomponents and for the stresscomponents, determined by the straincomponents
in accordance with the linear relations between stress and strain for an elastic,
isotropic material.
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The values of the five parameters, &,, 8,, B,V,.V , are determined by the stress
resultants, the normal force N, the two components of the shearforce, D, D,, and
the two components of the bending moment, M, M, . These relations are independent

of the warping function X. The expression for the twisting moment, M, , obviously

does not depend on the warping function if the warping displacements are equal to
zero, which is only the case for circularly symmetric cross-sections. Though the shear
components D, D, are the resultants of the shear stresses, which do depend on the

function X, these resultants are independent of X because of the boundary condition:
r,n, +7,n,=0. (4)
The other two boundary conditions,
on, +r,n, =0,
r,n,+o,n, =0,
are satisfied by the expressions (3). Note that along the length of the prismatic beam
on the outer surface holds n, =0.

For axes through the geometrical centre of the cross-section (J' ydA =0, J zdA=0) we
A A

define
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We derive



N =jaXdA=ZG(1+|/)A£O,
M, = [o,2dA= (B, + BXC,, + (¥, + Y, (6)

M, ==[a,ydA=~(B,+ B, = (y, + yXC,,.

The linearized expressions for the local curvatures of the beam axis are
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Thusin (6) we have the linear relation between bending moments and curvatures.
We consider
00,
A 0x &
and note that by partial integration, making use of the equilibrium condition
0
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Similarly the expression for D, is derived. Hence we have, independent of the
warping function X,

dM

D,=pl,+yC,=——-

dx '

(8)

aMm,
D,=pC,+yl, = ™

Substitution of the expressions for 7, ,7,, from (3) into the equation of equilibrium

(7) may lead usto the second order partia differential equation for the warping
function X, where the boundary condition (4) supplies the appropriate boundary
condition for this partial differential equation. However closedform solutions are for
nearly all cross-sectional shapes out of the question.Therefore instead of showing this
partial differential equation we shall describe the finite element solution of the
warping problem. With a deskcomputer this solution has become a straightforward
compution, that produces al relevant properties of a beamsection, together with nice
illustrations of the stressdistributions and of the warping of the cross-section.

Our starting point will be the virtual power formulation of the remaining deformation
problem of a beamsection.
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Fig.2 Slice of beam with stresses and velocities.

Since the warping function X and the specific angle of twist w are independent of the
longitudinal coordinate x it sufficesto consider aslice dx of the beam, depicted in
Fig.2. The principle of virtual power stipulates that the power of the stresses, acting
on the two cross-sections, is equal to zero for all values of velocities that leave the
dlice of the beam undeformed. Thisis an equilibrium condition with subsidiary
conditions, that can be taken into account by Lagrangian multipliers. We only have to

consider arbitrary warping velocities u,, = % and rates of twist @w. Only the
shearstrains
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are affected by X,w. Taking the condition of zero deformation into account by the
duasof y,,,y,, , equilibrium in accordance with the principle of virtual power
requires:
aa X
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The multi pI iers 7,7, ae ofcourse recognized as the shearstress components because

for an elastic material the expression for the rate of work of deformation is equal to
the rate of change of the elastic potential with a quadratic expression for
the contribution of the shearstrains. Thisimpliesfor the isotropic material:

T =GV Ty =GV
Substituting the expression for o, from (3) we arrive at the following variational
formulation of the shear deformation problem for a prismatic beam:
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For the determination of the function X we first observe that it is a continuous
function of the coordinates y, z, which permits a representation to any desired degree

of accuracy by continuous, but only piecewise differentiable functions of these
coordinates. Furthermore any shape of cross-section, ssmple or multiple connected,
can be arbitrarily closely approximated by a composition of triangles. The finite
element method consistsin this case of dividing the cross-sectional areainto afinite
number of triangular elements with functions for X such that continuity at the element
boundariesis ensured, while for each element these functions are unequivocally
determined by independent parameters, expressing the function values at the nodal
points. Though linear functions would be permissible, quadratic functions are
preferable, because of the linearly distributed stresses they can describe. Thisis
particularly important for thin walled sections with alinear distribution of shear stress
over the thickness.

For triangular elements triangular coordinates are appropriate. With the rectangular
coordinates Yy, zof the three cornerpoints of atriangle the cartesian coordinates are

expressed in terms of the triangular coordinates as follows:
1] (211 L
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Since L, +L, + L, =1 there are only two linearly independent triangular coordinates.

The quadratic representation of the warping function for one element is now defined
with the cornerpoint and midside values as parameters.

(2L, -, X,
(2L, -DL, X,

X =X (2L, -l Xe= Xs .
aLL, X,
aL,L, Xs
aLL, Xs

Differentiation and integration formulae can be given with the aid of the following
coordinate differences:

=Y, Y0 =2-2,

a8,=Y"Yb=2-7,

=Y, - Yb=2-2.
The finite element contributions to the equations resulting from the variational

condition (9) can now be calculated by application of the differentiation and
integration rules, given by:
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with 2A=ab, —ab, =ab, —ab, =ab, —ab, while the integration rule reads
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When from hereon X denotes the vector of all nodal displacements in the whole

cross-section, by calculating the contributions from the individual finite elements the
variational condition (9) can be written in the form:
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The matrix K, the vectors QN b,,b,,b,,b,, and the third order moments of the cross-

1Ry Mz My Mz
section |, 1,5, are built from the contributions of the individual finite elements by
the appropriate computer procedures. They define the linear equations

KX =1,Gew+ (b, = %, ) B+ (B, = Y b ) 1,

M, ==X"b, +Gl 0= Y (Bl s =M )
One of the nodal displacementsin X must be prescribed, otherwise the warping
displacements would be indeterminate and the matrix K will be singular.

The solution for X may now be written with separate terms containing Gw, £, y.

X = X,Gw+ X, B+ Xy,

(10)

with
X, =K™h,,
X, = K—l(bz = Vs b;), (11)
X, =K (b, = Y )-

Substituting these solutionsinto the expressonsfor M, and 7,,7,, we find
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and for the individual finite elements
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Thematrices D,, D, determine the corner values of the derivatives of the function X
for theindividual triangular elements.
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The specific angle of twist w may now be expressed in terms of the twisting moment
M, andthevaluesof S and y, that are determined by the shear forces D, and D,
according to (8). Note that the torsional stiffness constant of the cross-sectional areais
given by

j— M X
" Gw
For the determination of the coordinates of the shear centre (y,, z,.) and of the values
of the shearcoefficients k,,k,,,k, the elastic energy of the sheardeformation is

yz?! Nz
calculated and put equal to the quadratic expression for this energy in terms of the
stress resultants, such that to each of these stress resultants corresponds a dual

deformation quantity of the elastic line model of the beam (I, = Ai?).
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The six independent constants in the matrix have been chosen in away that makes a
clear phenomenological interpretation possible. The constant i? determines the
torsional stiffness, vy, z,. determine the point through which the shear forces must go
in order to avoid twisting of the beams (the so-called shear centre), and the other three
constants are the shearcoefficients, that determine the average shear angles Vy VZ ,
produced by the shear forces D, D, and by the axial moment about the geometrical

centre of the cross-section M, .
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In terms of the solution for the warping displacements X, the coordinates of the shear
centre are given by

_ C.X/b, +1,X/b,

Yec :
I,1,-C,
Zm:—lyxlTbZ+Cy2X1Tby
- :
I,1,-CZ

The expressions for the shear coefficients are rather complicated. Unlike the other
quantities they have a dlight dependence on Poisson’ s ratio. When the bending
deformations are uncoupled by taking the so-called principal axes, for which C,, =0,

as the coordinate axes, the shear deformations are in general not uncoupled. However
for dlender beams the shear deformations may be neglected compared to the bending
deformations. We have
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The solution procedure for St.Venant’s problem of beam stresses and deformations,
described above, has been implemented in the JAV A-program BEAMS. It was
adopted from an earlier PASCAL version, that was used by the author in his lectures
on strength and stiffness of structures, starting in 1986.

2.Elastic line model of rods and beams.

For sufficiently slender beams and rods the local strain components will remain small
for even large curvatures of the beam axis and for large angles of twist. Then the
stressdistribution in a cross-section will hardly differ from the stressdistribution
according to St.Venant’ s solution of the linearized equations of the theory of
elasticity. The beam or rod may be modelled as an elastic line with in each point
stiffness properties derived from St.Venant’s solution. The axial strain is determined
by the normal force N, the local curvature of the elastic line by the bending moment,
the specific angle of twist by the axial moment, and the average shear angles by the
shear forces and the axial moment.



We shall consider abeam or rod that may be represented by an elastic line along the
central axis (i.e. the line connecting the geometrical centres of the cross-sections). In
the reference state we take the elastic line along the x-axis of afixed cartesian system
with the cross-section oriented such, that the y -axisand z-axis coincide with the

principal axes of the prismatic beam or rod (C,, =0). With the unit base vectors
e,.§,,€, of thefixed cartesian system the position of an undeformed elastic line
segment of length | is given by the radius vector r,

r=(x *+se,,0ss<lI,
while e, ,e, determine the orientation of the principal axes of the cross-section.

In the deformed state the change of position of a point of the elastic line is determined
by the displacement components u,v, w, while the rotations of the orthogonal triad

with basevectors e,.,e,.,e,. are described by means of angular coordinates ¢, 7, ¢
in three orthogonal transformations.

e.l |1 0 0 |[cosgd O -sind|| cosg sng Oje
e.|=|0 cosy sny 0O 1 0 -sing cos¢ Oje| . (15)
e, 0 -sing cosy | sng 0 cossd 0 0 1,
The radius vector in the deformed state is given by
r= (X, +s+u)e, +ve, +we,. (16)

Here s isthe material coordinate on the elastic line and the angular coordinates
Y,3,¢ together with the displacement components u,v,w determine as functions of
this material coordinate the geometry of the elastic line in the deformed state. We can
distinguish six deformation components, &, y,.,V,.,K,K K., defined asfollows:

2¢(ds)? =dr odr —(ds)?,

y,.ds=e, odr,

y,ds=e, odr,

e =g 0T e, o dj;”‘ , (17)
=T

K, =—€,0 dj;” = y*Od;:-

Conditions under which large elastic curvatures and twist of a beam or rod may occur
imply for most materials that the extension of the central axis as well as the shear
angles y.,.,y, may be put equa to zero. We shall limit our discussion of the

continuum model of the elastic line to this case. Consequently we have

10
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Y, =(-cosysing +sin¢/sin§cos¢)(1+%j+(cosz//cos¢ +sint//sinz95in¢)%+
+sint//cos§d—W=O,
ds
. . . du . . . dv
v, =(singsing +cos¢/sn§cos¢)(1+£j+(—smt//cos¢ +cos¢//smz95|n¢)£+

+cosy cos:9d—W =0.
ds
From (15) and (17) we obtain the following expression for the specific twist

dy d¢
K,=——-sind—L 18
“ds ds’ (18)

The expressions for the curvatures of the elastic line read according to (15) and (17)

dg

dg .
K. =COS{/— +sny cosd——,
v d ds v ds

dg

4o (29)
K, = —sint//E +COS¢/COSz9E.

If we consider large curvatures about one of the principal axes of the cross-section,
while the curvature and the rotation about the other principal axis remain small, then
simplifications are possible.

For |¢|<<1 and ‘% <<1 we derive by linearization with respect to ¢ and v:
S

(1+%j:c0319, K. d‘/l smz9d¢
d ds

S ds
av_ ¢ cos?, K. =COSY/—— dd +siny cos9—— d¢ (20)
ds ds ds
dw . . dg d¢
— =-sindg, K, =—Sin{— + Cosy cosg—.
ds z v ds v ds

Similarly we obtain for || <<1 and ‘2—\’\/ <<1 by linearization with respect to & and
S

W
(1+%j Cosg@, kazd_‘/’_ %
ds ds ds’
dv . dg . d¢
—=sngy, K. =COSl{/— +siny——, 21
& ¢ " t//ds t//d (21)
dw . dsg d¢
— =3, K., =—Siny —+cosy —=.
ds z wds wds

For the determination of the bifurcation points of the initially straight rod and beams it
is sufficient to consider expressions, in which only terms up to the second degree are
retained.

11



du dy ,dg¢

—=-3F+¢%), Kk.,=—T-9—-,

ds %( ) “ ds ds

dv ds d

L=, k=S ey L, (22)
dw =-7, K, =%—¢/£.

ds ds ds

However in order to settle the question of stability at a bifurcation point terms up to
the third degree will be needed as we shall see.

3. Bifurcation problemsfor rods and beams.
First we consider the wellknown problem problem of the buckling of a column in the
x-z plane in away that provides a basis for comparison with the finite element
representation.
The end conditions for the Euler column are given by

s=0=u =O,W=O,My =0,

s=l=>N=-F,w=0,M =0.
Because we restrict the theory of the elastic line here to the case, that the elastic

potential of the beam is bending energy, the power of the external load F is stored as
bending energy and we have

J-MYdS J-E dg dd d dsg

y————Os0—=M =El —. (24)
ds ds ds ds

The equilibrium condition for the beam according to the principle of virtual power

requires zero power for all motion in the absence of deformation. For ¢ =0 this

condition implies u, =0, while according to (20) we have two other conditions for

(23)

zero deformation. All conditions can be expressed in terms of
JI Wy = U = J';si nd9ds,

@,
ds

d—st W -V, =0= chosﬂzﬁ"ds
Ods 0

By the principle of virtual power we then have with M, asamultiplier variable and
Q asamultiplier constant :

FJ sindJds j M, OIZ9ds QJ cosIIds. (25)

Substituting (24) , Ilnear|2| ng and by partial integration we obtain
| d%9 . .
IO_[EI yE‘*‘ FZ9+Q]\9dS— 0|:|Z9

Here the end conditions (22) have been taken into account. From the variational

condition we derive
d39
El, —+FJ-Q=0. (26)
Y ds?

The solution of the differential equation (26),

12



9 =3 cos(ps) +J,sin(us)+Q/F, u2=£,
y
must satisfy the end conditions
s=0:M, =El %=OS—| M, =El, @ ojﬁd =0.
Y ds

The eigenvalue u then follows from the reqw rement that the homogeneous equations

0 u oll%. | o

—usingl  pcosyl 0|9, |=|0

1. 1 Q 0

_/Jsm,ul /J(l cosy ) I_ A

must have a nontrivial solution. We derive
WAsnd =0==m  9,=0, QI/F=0.

Hence the bifurcation solution is given by

mEl,

.

F. =4’El, = 9. = cosus, u,=0,Q, =0. (27)

In their linearized form the bifurcation equations do not give an indication about the
stability at the bifurcation point. By keeping terms up to the third degree in the
equilibrium condition we can determine the change of F with the amplitude of the

bifurcation . We put
F=F +F,
9 =9 cos(us), (28)
Q=0.
Linearizing with respect to the perturbations and taking into account the termsin 9
up to the third degree we obtain from (25) the variational equilibrium condition:

J[E yi’z do (R +F")(9-%5°)9]ds=005.
Substituting (28) we have

[,UZEI yﬁj';Sinz(ﬂS)ds—(Fc + Fr){éﬂ) cosz(us)ds+%z9‘°’f; 0054(ﬂ3)d3}}§ =003,
The resullt,

= %F5°, (29)
shows the stability of the Euler column at the bifurcation point, because

=F +}F& >=F,

As a second example, for which the comparison between the continuum approach and
the finite element model has been made, we shall discuss the lateral buckling of the

end-loaded cantilever beam in the case that the curvature «,. may be put equal to
zero.

13



dg . d¢
K., =CoOSl/—+siny— =0,
4 wds wds

M, =Elx,. =El ( SII‘]I//E+COSI/Id¢j

ds
M, =Gl;x,. =Gl [dw d¢j
ds ds

(30)

w, = —J';z—vsvds = j; Jds.

By the principle of virtual power we have the following equilibrium condition, in

which we have smplified the expression for «,. with the aid of the condition for «.. .

oy a(as o 2ot rt
0 cosy ds dt| cosy ds ds ds Jdt\ ds ~ ds

J' M — (cosz//—+smt//d¢jds+ FJ' Jds=00¢, ¢, 9.

The multiplier M is of course the bending moment, against which the beam is
considered to be infinitely stiff. Linearizing and by partial integration we obtain

L;K_ A e 935*“”%]4"5*

I dMm : d¢ | dy S :
+j0( E+ F]ﬂds+(EIZE+ Ml/lj¢|0 +GITE¢/|° +M 19‘0 =00y, d,¢.
Acoording to (30) and (31) we derive

(31)

d—M—F s=0:M =0= M =Fs,
ds
d’¢ W o= d¢+|:s4/ 0,
* ds® ds ‘ds
2 2 2a2
o, LY ps¥ oo 9, FS g
ds ds ds° ElGl;
A AN AP AN,
= - -—— &+ +
=Y 401( 5 3478{ 34781112°
L T
-— — & -+
& [‘t ‘t 4589° 45891213°
2
Jro F1Yels L Gl
ElLGl, | El

z

£=0: d‘” 0, £=1:¢=0, =@, =047=16.1009,
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9 _o £=1:4=0. (32)

Eodf

= ¢=a’ A\ }/52{1_/1_5}/54+/1§/1_§}/58_A_§/1_§_A3 #%E%+..} -0.3117614
e 2 347°° 3478"7°" 3478111277 B

Again in their linearized form the bifurcation equations do not give an indication
about the stability at the bifurcation poi nt. However with

d v d¢
cosy— +siny — = =
- w J =-], [ A7 dsj
the stability coefﬂuent isreadily obtai ned from (31) and (32) by numerical integration if
the bifurcation mode is substituted and terms up to the third degree in ¢, are retained.
From

J(dqﬁ Y d¢j(d¢ d¢¢, v zd¢jd5+

dé dé
d_éﬂ_%d_‘/f_%'_% A % 9de = ;
+aj0(d{ ﬁd{J(dE d{ﬁ ﬁdfjdgqma joﬁdf o0y, 3,9,
we obtain
ElGI 2 2
F=A /lz—ZT [1+(0.2630 +0.635)% |~0.423F 7,
or, for
F = A [+ O@) = F, +O@),
F =F,[1+(0.2630 +0.212); |. (33)

This result matches the result given in [1].

4.Finite element model of rods and beams.

The interface of finite elements, based upon the elastic line concept, isanodal point.
The location of these nodal points and the orientation of an orthogonal triad, rigidly
attached to each nodal point, can be given by the position vector with components

% =¢ +u, and by the orthogonal transformation with components R.;, which

transforms a vector in the x_ system into a vector with respect to the local triad at the

nodal point. For modified angular coordinates of Euler this transformation is defined
in (15), but for the description of arbitrarily large rotations in finite element programs
the four Euler parameters (which have to satisfy one condition, leaving three
independent parameters) are to be preferred.

The six deformation parameters or generalized strainsfor an initially straight bar
connection nodal points p and q were definein [2]. Their geometrical meaning is
indicated in Fig.3.
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Fig.3 Generalized strains of bar element between nodal points p and g.

The six generalized strains can be expressed as anal ytic functions of the 2x6=12 nodal
coordinates of the bar element e:

g =Df (uk ) . (34)
Since the generalized strains of Fig.3 are defined with respect to orthogonal triads,
oriented according to the bar-axis and the principal axes of its cross-section, we need
the orthogona matrix R. = R.,, which determines in the deformed and in the

undeformed structure the orientation of the bar-axis and of the cross-sectional plane
with reference to the local triads at the nodal points. The functions (34) for the

generalized strains of Fig.3 can now be written asfollows (1% = (gﬁp —Eiq)(fip —Eiq) ):
_1 2
& —E[(fip =&t +up _uiq)(fip =&t +u? _uiq)_l ]"’
3—(1](2‘932 +E,E,+265 + 265 + £ .6, + 2562),

&= %[ R.R? R.Rey ~R,.RYRLR, |,
£ =-R,.RY (& - +ui -up),

£, =R,.RY (& - &7 +u-up),

£ =Ry R, (qu —¢7 ) —ujp),

& =—Ru.R} (qu =& +uf —ujp).

The introduction of the quadratic termsin the bending deformations into the
longitudinal deformation, first introduced in [4], make these expressions much more
effective in anonlinear analysis. In particular the number of finite elements needed to
obtain a certain accuracy in a buckling analysisis drastically reduced by these terms,
which give a contribution to the constant values of the second derivatives, decisive for
the buckling phenomena.

If the deformations &° remain sufficiently small (|&°|<<lI), then in the elastic range
they arelinearly related to anormal force g, , atwisting moment ¢, and four bending
moments o,,0,,0,,0, by asymmetric matrix of elasticity coefficents.

o= (& -2). (36)
Here we introduced initial deformations £% to represent inelastic strains, or simply
misfitsin the perfect, undeformed structure (u, = 0). For a prismatic bar with the y-

(35
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and z-axisin a cross-section along the principal axes the elasticity coefficients are

given by the matrix
'S 0 0O 0 0
0SS ©O 0 0
o = 0 0 4S5 -25 O
0 0 -25 45 0
0O 0 O 0 4S,
|10 0 O 0 -2S,
with
s==% s=Sr
s=t s=T

o O o o

25,
4s, |

(37)

Here, like in par.2, the shear deformation has been neglected. If by means of a shear
stiffness, a shear angle in the X —Z planeistaken into account by a shear deformation
coefficient derived from St.Venant’s solution of the stress problem, the submatrix
with S, hasto be replaced by

s, [4@+3p)
1+123| -2(1-63)

41+3p)

-2(1-60)

| o

ly

201+v) IPA’

(39)

As the expression for 3 shows, the contribution of the shear deformation can in
general be neglected, because if 12A>> |, does not hold the elastic line model of the
rod or beam is questionable. It is not difficult however to take into account all elastic

energy corresponding to St.Venant’s solution of the stress problem. Then, in
accordance with (13), the stiffness matrix Sisthe inverse of the flexibility matrix F,

given below.
[
EA
0
0
F=
0
0
0
where

0 0
I 3
o P
I 3
:823 3E| ; + :833
I 3
_ﬁza E - 1833
ﬁzs _1835
_/825 :835

_,823
|3
6El,
|3

3El,

Pos

- :833 _:835

+ ﬁSS ﬁSS

ﬁSS + ﬁ55

3El,
|3

Pe Gm T

ﬂ55

_,825

ﬂ35

_1835

6El,

|3

3El,

Pss

+ L
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It isclear from the corrective terms  that  the coupling due to the excentricity of the
shear centre (Y., . ) will have an influence rather than the other terms, if this
excentricity islarge. But thiswill be the case for open thin-walled cross-sections, for
which the warping disturbance at the end points will again make the elastic line
model questionable.

The generalized strains (34) possess the proper invariance with respect to rigid body
movements of the bar element. However they are complicated functions of the nodal
coordinates u, . Since the value of the derivatives of these functionsin the initial,

undeformed state of the structure (u, =0) can easily be determined, in [2] the power

series expansion was considered (D? = 0).
D = Diokuk +% Dioklukul +% Dioklmukulum + %D | U U U Uy (39)
In [2] the values of the derivatives D, upto DS, aregiven.

The finite element model given here has been implemented in a JAV A-computer
program SPFRAME for the static, kinematic and dynamic analysis of trusses and
beam structures. This program was derived from an earlier PASCAL version (1987),
that was used by the author for the instruction of students.

5.Finite element representation of bifurcation problems.
From the principle of virtual power we have for arbitrarily kinematically admissible
l']k

fiu, =0é =o,D, u0u,.
Hence the equations of equilibrium for the external forces on the structure read

fu =00, (40)
Themultipliers o; are the generalized stresses, for an elastic material according to
(36) determined by

Ui:Sj (gj_g?):Sj(Di_giO)' (41)
Substitution of the series expansion (39) leadsto equations with the following terms
up to the fourth degreein u,:

0
Di,ij |: uI +y D] |mU|U +% i, Irmul umun + DJ Irmoul umunuo}

0
_I:D + D|0kl uI +}/D| kImuIu +}/D| klmnulumun +}é4 i,klrmoulumunuo]Sjgj +

+D0k| S!J U+ D|0k| S, LU Uy + % Di(,)klmSj D?,nul u,u, + “)
+ % DS D} U U U, U, + % DY, SJ Lot U Ug + e = f,.
For aloadlng Af! we can solve the linearized equations

DS Dy =, D)S§Dju’ =D]S;&- (43)
Let

o-il:StjD?,kuiv aio =S (Djo,kul?_‘gjp)7
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then o aretheinitial generalized stresses, u’ are the geometrical imperfections of

the structure, and ;' are the generalized stresses in equilibrium with the loads f,'

according to the linear theory.
In order that the solution of the linearized equations would satisfy the nonlinear
equations rigorously, it would be required that

DU =0,D’ Uy, = 0, etc.,
and (44
D’ u’ =0,D’,u’up, = 0, etc.
Though in general this condition can only be approximately fulfilled for certain loads,
the approximation can then be sufficiently close to consider the solution of the
linearized equations as the fundamental state of deformation. However, this
fundamental state of deformation need not be the only significant solution of the
nonlinear equations.

If we substitute into the nonlinear equations a solution of the form
u, = Au; +u +Au,,
then, as aconsequence of (44) all termslinear in Au, disappear except the following
I:Di(,)ij Djo,l + (/‘0‘.1 + Uio) D :|Aul =0. (45)
But these equations may have nontrivial solutions (Au, # 0) for certain valuesof A.

The lowest value of A for which the determinant of the matrix of coefficientsin (45)
is equal to zero (the lowest so-called eigenvalue) determines the buckling load of the
structure.

The pure buckling phenomenon, characterized by a bifurcation of equilibrium states
such as determined by egs. (45), isarather rare possibility. But in real structures
under actual loading conditions and with geometrical imperfections the underlined
termsin (42), which are responsible for the bifurcation phenomenon under the
idealized conditions (44), play a predominant role in a perturbation analysis of the
nonlinear equations.

An effective perturbation procedure is based upon the eigenvectors of the following
eigenvalue problem:

Ky&® =-1°G.€’, where K = Di(,)ijDp

I

0
m

Gy = o-ilDi(,)kl . (46)

Let there be r eigenvalues A" of finite value. We collect these eigenvalues and the
associated eigenvectors in matrices with the following elements:

Ekpzqf and /\pqz/lpdpq, p=123,...,r. 47)
For normalized eigenvectors

EwGuEq =0y EoKuEBq ="y (48)
Now we express the nodal coordinate changes as follows:

U =AU +ul +E & +uy,  EGyu =0. (49)

Equilibrium in terms of the principle of virtual power requires

DS (D, ~&9) -1 &, (Bp +up,) +ui | =00¢,.
The u, must, apart from being kinematically admissible, satisfy the orthogonality
conditions, u,G,E, =0.
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The big gain of the perturbation analysis, considered here, is restricted to the case that
the equilibrium equations stemming from u, may be linearized with respect to u, .
Then with terms to the second degreein ¢, we can solve u; from

Kol + UiODi(,)kl (/]u|1 + u|0) + UiODi(,)kl E.$,+
+{ %D, D?m{(/lu,1 + uf’)(/lulm + uf;) + 2(/1u,l + u,°) Enpép+ E|pEm5pfq} + (30)
+EIpDi(,)k| Sj Djp,mquprq +}/2 E|pqu (/]o—l1 + O-IO) Di(,)klmfp fq] o =0

Since u, must satisfy the orthogonality condition in (49) the proper solution for u, is
given by

Uy = (3 + EpEpyGr Ui - (51)
We define

o7 =§ D + %500 { (v +u2) (Aut +uP) +2( M +00) B8, +

+E|<p Eiqu fq} . (52)

Now we obtain the nonlinear equations for £, withA as an independent loading
parameter by considering the rates fp in the principle of virtual power.
Ep (40! +07+07 ) DY (M + W) +(A = 13,,) &, +
+E,E (0 +07 )D&, + Eo/Dlu +

+ul£,p(/‘0-i1+ai0) DU’ +Eg (/]ull+ulo)Di(,)kISj{}/2D'o EmgEndoe +

j,mn—mg —nr

7D o EraEr Eneuly €} +{Ep DS D0 B + EoD5 S DY Ey + (53)

j,mno —mg —nr —os j.Im=mq j,m—nq
+Ekp qu (/]a-ll + 0]0) Di(,)klm} uIrgq +{% Ekp Di(,)ij D]p,lmEIqur + Ekp E|q Di(,)kl Sj Djo,mEmr +
+% Ekp E1qur (/]Ofl + 0]0) Di(,)klm} Eq{r +{}/6 Ekp Di(,)ij D]p,lmn E|q Emr Ens +
+% Ekp E1qur Di(,)kImSj D]OI"I Ens +}/6 Ekp E1qur Ens (/‘O_I1 + 0-|O) Di(,)klrm} 5q§zr<ts = O
Here only terms up to the third degree in &, have been retained.

The participation factors &, of the eigenvectors ¢ will berelatively small aslong as

the load factor is far enough away from the corresponding eigenvalues A°. Asa
consequence in egs.(53) only the participation factors for the eigenvalues close to A
need to be considered. Then in practical applications only afew nonlinear equations
have to be solved in anonlinear analysis, even for structures with a very large number
of nodal coordinates.

Just asin the continuum approach of par.3 in the finite element representation of the
Euler column only the first eigenvalue and eigenvector have to be taken into account
for the determination of the stability coefficient. Since the linearized problem for the
centrally loaded strut is so-called statically determinate the matrix of DS, isasquare,

invertible matrix, and from (51),(52),(53) we obtain
U =-#[ D% ] Dlngegz-[D% ] S ] [Pf ] {e DSE Dl e +
+%er1n¢/‘0_:) Dg,lmn} {12’
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g = _I:Di(,)k]_l Dy Sr?qum%{lz _%[Di?k]_ e-llql“/lap P, pL

(11-1)& - 2¢¢DY, [ DY, ] €DY,, SE DS 68 +
~¢eD’, [D°, | €eA0iDY, & + -
+ 366Dl [, | €Dl [ DY, | AgiD, & +
+ 246D S D) imE €687 + % A0 D imEiE 6687 =

Here §' denotesthat part of the stiffness matrix that is determined by § and S7 is
the part defined by S, .

In the expression for u, the termswith [S}“ ]_l are small as compared to the first

term, but in the expression (52) for g/ the contribution of thisfirst term cancels,
whileevenfor S - oo the other terms give afinite contribution because of the

multiplication by S'. In thelast equation in (54) the terms with | S ]_l, dueto the

substitution of u, in (53), could be neglected.

In order to gain some insight in the expressions (54), and to make a comparison
between the continuum approach and the finite element representation we shall
introduce a notation, in which in the case of the Euler column the axial components u
of the nodal displacements will be denoted by Latin indices, u,, and the nodal

deflections and rotations by Greek indices, u, .
First we note that in the case of an inextensional axis we have instead of (49)

U, = Uy,

U, = B¢,
The axial components of the displacements can now be expressed in terms of ¢, and
€. with the aid of the expression for the axial deformation, & =D".

D" =Dl U +% |a/3elel{1 + % DUl +3.% ‘Oka/zulielel +
%,D%, e e eeisl +....=0.

Since [Di?k] in the case of the Euler column is a square non-singular matrix we find

(55)

with terms up to the fourth degreein & :
_[Di?k}_l[% |aﬁelelfl % |Ia,B |:D:)I }_l Djoyde;l/etliff +
4D e el el + 1 el DO aﬁ[Dg,,]' e;e;Dgw[ng} DS, & -

If we substltute expression (56) into the equilibrium condition
(Di,kukl+ D aeclr)S]BDj —Afg ukl 0,

and if we observe that
-1
[Di(,)k] fe =0,
then again the last equation in (54) is obtained.
We can also, like in the continuum model of par.3, take the inextensibility condition,
D" =0, into account as a subsidiary condition with the aid of avector of multipliers

(56)
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o, . We can express by the inextensibility condition the displacement rates u, inthe

flexibility and rotation rates:
D\U + DU, =0= 0, = _[Dil,\‘k}_l DU,

Analogous to (25) we have according to the principle of virtual power
-0,[D)]"D,, +D, |$D,0, +

o (—Di"\'k (DY ] Dy, Diﬁ,) u, +A£ D] D,,u, =00,
The linearized bifurcation equations read
AgiDf =Afl= ot =[Df ] 1L,
(D%, SPD?, +A'0'D’,, )€, =0, (57)

i,a™lj iaB

DU, =0=u, =0.
Next we consider the bifurcations

u, =€¢&+0(&),

U, = Uy,

0, =40 +0.
We derive with terms up to the second degreein ¢, :

-1
U, = _%[ Di(,)k] Di(,)aﬁezlre;?flz’
-1

o= _[ Di(,)k] [%Aath,kaﬁe;e,lelz + %Dg,kaSEqu,pe}} 512]-
Finally it isrequired that the virtual power equation, including the subsidiary
condition, is satisfied for arbitrary &, . The equation with terms up to the third degree
in &, that follows from the condition

[(€ DS, +€, D0 Ui + D’y €66 &) SP (D7 85, + 2. %507 U €, +

ika i,aBy

%D;p 866, & ) * (’mTl o ) ( Dk Ucs + Dilys€ €5, + Dy Uy + D)pU €656, +
% Di(,)kaﬁulz,leclre,la 512) -1 fkl uli,l:' $ =00¢,,
isagain identical to the last equation in (54). We recall that this equation was derived
for alarge, but finite stiffness against elongation of the column axis.
In the analysis of the continuum elastic line model aswell asin the finite element
analysis the stability problem could be solved even for the case of aninextensible
column axis, because of the fact that the normal force and itsfirst perturbation is
statically determinate. A similar situation arisesin the lateral buckling case of the end-
loaded cantilever beam. Here in addition to the inextensibility condition a condition of
zero curvature about a principal axis of the cross-section is taken into account, either
directly or with the aid of the bending moment about this axis as lagrangian
multiplier. This bending moment is also statically determinate in the example of
lateral buckling considered in par.3.
The distribution of primary stresses (N in the case of the Euler column, N and M in the
case of the end-loaded cantilever beam) can in other cases be statically indeterminate.
Then thereis only awell posed stability problem if the stiffness against these stresses
is finite and the stability coefficient will depend largely on the redistribution of the
primary stresses during buckling. This redistribution of stress can be determined by a
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model with a number of finite elementsthat is small as compared to the number of
elements required to take the kinematical restraints into account with sufficient
accuracy in the case of the Euler column and of the end-loaded cantilever beam. Asit
has been shown in [3] in these cases 16 elements were needed for a result with a 2%
accuracy. The explanation for the fact, that in the case of statical indeterminacy a
much smaller number of elements is needed to obtain this kind of accuracy, is given
by the observation that all terms of the third degree, appearing in the last equationin
(54), can usually be neglected because much larger terms of the third degree appear.
These terms no longer cancel against each other in the case of statical indeterminacy.

Concluding remarks.

The classical subject of the theory of elastic beams and rods has received a practically
important addition in the formulation of afinite element representation. Now
nonlinear problems can be solved by straightforward desk computations.
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