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The theory of elastic beams and its finite element implementation 
 
          By  J. F. Besseling 
 
Summary 
After the creation of the theory of elasticity  by Cauchy, published in 1822, St.Venant 
developed the theory of  tension, bending and torsion of beams based upon this theory 
of elasticity. The main results were published in 1855  and 1856. 
Though the equations of the theory of elasticity were linearized, the results obtained 
by St.Venant for the stressdistribution and the stiffness properties remain valid for 
large displacements and large relative rotations as long as the local strains of a beam 
remain small. For materials used in structures, that may not be loaded beyond the 
elastic limit of the material, this condition is satisfied. 
A brief account  is given of the theory of the elastic line, applicable for the description 
of the mechanical behaviour of slender beams. This nonlinear theory has been applied 
to the stability analysis of rods and beams in its continuum mode. Thus a bifurcation 
point in the load-deformation relation of the geometrical perfect and physically 
homogeneous rods and beams under certain loadings could be established. 
The column buckling, first studied by Euler (1744) before the creation of the 
mathematical theory of elasticity,  was together with  the general problem of elastic 
stability fully understood at a much later date (Koiter 1945). 
Though the results, obtained with the continuum model of the elastic line, remained 
limited to the determination of the behaviour in the neighbourhood of the bifurcation 
point and to the analysis of the important effects of small imperfections, the finite 
element model now makes a realistic simulation of  large displacements and rotations 
of elastic rods and beams a matter of straightforward desk computations. The type of 
finite element model, proposed by the author in 1981 [5], is eminently suitable for 
these computations and is therefore once again defined in this paper. 
 
1. Stiffness properties and stressdistribution of prismatic beams. 
The theory of St.Venant determines the stresses and deformations in a prismatic 
beam, made of an isotropic, linearly elastic material. The results are valid for beams 
of arbitrary length, but the loaddistributions at the ends of the beam follow from these 
results. The fact that actual loading of  beams in structures will differ from the 
loaddistributions, dictated by St.Venant’s solution of the problem, will however only 
affect the situation close to the ends of the beam, provided its cross-section is 
sufficiently solid. For beams with thin-walled, open cross-sections the disturbance due 
to non-conforming loaddistributions will propagate over a great length of the beam. 
But in all other cases the principle of St.Venant of elastic equivalence of statically 
equipollent systems of load is valid. 
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                  Fig.1 Prismatic beam, coordinate system and displacements. 
 
In terms of the coordinate system shown in Fig.1, we shall give the results of 
St.Venant’s solution. We have added the finite element solution of the warping 
displacements, that have to be determined for each shape of cross-section. In 
St.Venant’s solution a warping displacement function of the cross-sectional 
coordinates has to satisfy a second order partial differential equation with an 
appropriate boundary condition. 
The displacement components of a point of  a cross-section at a coordinate x are given 
by the following expressions. The displacements, that leave the beam undeformed, are 
represented by the three translations, 0 0, ,0u v w , and by the three (small) rotations,  

0 0 0, ,ϕ ψ χ . The two independent elasticity constants of the isotropic material are 
represented by the shear modulus G and Poisson’s ratio . The warping displacement 
of the cross-section is given by wu . 
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The expression for wu  consists of an unknown function of the section coordinates and 
an additional function of these coordinates in case Poisson’s ratio  is unequal to zero. 
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Since plane cross-sections of a beam generally do not remain plane in St.Venant’s 
solution, obviously this solution can be rigidly valid only if the warping of the cross-
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section is not hampered at the ends of the beam. In structures this will be seldom the 
case, but just for this reason the above mentioned principle of St.Venant is so 
important for practical applications of the stiffness properties of beams, derived from 
his solution of the beam deformation problem. 
From the expressions for the displacement components we derive the results for the 
straincomponents and for the stresscomponents, determined by the straincomponents 
in accordance with the linear relations between stress and strain for an elastic, 
isotropic material. 
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The values of the five parameters, 0 0 0, , , ,ε β β γ γ , are determined by the stress 

resultants, the normal force N , the two components of the shearforce, ,y zD D , and 

the two components of the bending moment, ,y zM M . These relations are independent 

of the warping function X. The expression for the twisting moment, xM , obviously 
does not depend on the warping function if the warping displacements are equal to 
zero, which is only the case for circularly symmetric cross-sections. Though the shear 
components ,y zD D  are the resultants of the shear stresses, which do depend on the 

function X, these resultants are independent of X  because of the boundary condition: 
      0.xy y xz zn nτ τ+ =                                                                                                (4) 

The other two boundary conditions, 
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are satisfied by the expressions (3). Note that along the length of the prismatic beam 
on the outer surface holds 0xn = . 

For axes through the geometrical centre of the cross-section ( 0, 0
A A

ydA zdA= =� � ) we 

define 
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We derive 
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The linearized expressions for the local curvatures of the beam axis are 
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Thus in (6) we have the linear relation between bending moments and curvatures. 
We consider 
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and note that by partial integration, making use of the equilibrium condition 
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Similarly the expression for zD  is derived. Hence we have, independent of the 
warping function X,  
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Substitution of the expressions for ,xy xzτ τ  from (3) into the equation of equilibrium 

(7) may lead us to the second order partial differential equation for the warping 
function X, where the  boundary condition (4) supplies the appropriate boundary 
condition for this partial differential equation. However closedform solutions are for 
nearly all cross-sectional shapes out of the question.Therefore instead of showing this 
partial differential equation we shall describe the finite element solution of the 
warping problem. With a deskcomputer this solution has become a straightforward 
compution, that produces all relevant properties of a beamsection, together with nice 
illustrations of the stressdistributions and of the warping of the cross-section. 
Our starting point will be the virtual power formulation of the remaining deformation 
problem of a beamsection. 
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                Fig.2 Slice of beam with stresses and velocities. 
 
Since the warping function X and the specific angle of twist ω  are independent of the 
longitudinal coordinate x  it suffices to consider a slice dx  of the beam, depicted in 
Fig.2. The principle of virtual power stipulates that the power of the stresses, acting 
on the two cross-sections, is equal to zero for all values of velocities that leave the 
slice of the beam undeformed. This is an equilibrium condition with subsidiary 
conditions, that can be taken into account by Lagrangian multipliers. We only have to 

consider arbitrary warping velocities w
Xu G= �

�  and rates of twist ω� . Only the 

shearstrains 
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are affected by ,X ω� � . Taking the condition of zero deformation into account by the 

duals of ,xy xzγ γ� � , equilibrium in accordance with the principle of virtual power 

requires: 
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The multipliers ,xy xzτ τ  are ofcourse recognized as the shearstress components because 

for an elastic material the expression for the rate of work of deformation is equal to 
the rate of change of the elastic potential with a quadratic expression for 
the contribution of the shearstrains. This implies for the isotropic material: 
      , .xy xy xz xzG Gτ γ τ γ= =  

Substituting the expression for xσ  from (3) we arrive at the following variational 
formulation of the shear deformation problem for a prismatic beam: 
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For the determination of the function X we first observe that it is a continuous 
function of the coordinates ,y z , which permits a representation to any desired degree 
of accuracy by continuous, but only piecewise differentiable functions of these 
coordinates. Furthermore any shape of cross-section, simple or multiple connected, 
can be arbitrarily closely approximated by a composition of triangles. The finite 
element method consists in this case of dividing the cross-sectional area into a finite 
number of triangular elements with functions for X such that continuity at the element 
boundaries is ensured, while for each element these functions are unequivocally 
determined by independent parameters, expressing the function values at the nodal 
points. Though linear functions would be permissible, quadratic functions are 
preferable, because of the linearly distributed stresses they can describe. This is 
particularly important for thin walled sections with a linear distribution of shear stress 
over the thickness. 
For triangular elements triangular coordinates are appropriate. With the rectangular 
coordinates ,y zof the three cornerpoints of a triangle the cartesian coordinates are 
expressed in terms of the triangular coordinates as follows: 
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Since 1 2 3 1L L L+ + =  there are only two linearly independent triangular coordinates. 
The quadratic representation of the warping function for one element is now defined 
with the cornerpoint and midside values as parameters. 
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Differentiation and integration formulae can be given with the aid of the following 
coordinate differences: 
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The finite element contributions to the equations resulting from the variational 
condition (9) can now be calculated by application of the differentiation and 
integration rules, given by: 
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with   2 1 1 2 3 2 2 3 1 3 3 12A a b ab a b a b a b a b= − = − = − , while the integration rule reads 
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When from hereon  X  denotes the vector of all nodal displacements in the whole 
cross-section, by calculating the contributions from the individual finite elements the 
variational condition (9) can be written in the form: 
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The matrix K , the vectors * *, , , ,w y z y zb b b b b , and the third order moments of the cross-

section 3 3,y zI I , are built from the contributions of the individual finite elements by 

the appropriate computer procedures. They define the linear equations 
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One of the nodal displacements in X must be prescribed, otherwise the warping 
displacements would be indeterminate and the matrix K will be singular. 
The solution for X may now be written with separate terms containing , , .Gω β γ  

              1 2 3 ,X X G X Xω β γ= + +  
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Substituting these solutions into the expressions for xM  and ,xy xzτ τ  we find 
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The matrices 1 2,D D  determine the corner values of the derivatives of the function X 
for the individual triangular elements. 
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The specific angle of twist ω  may now be expressed in terms of the twisting moment 

xM  and the values of β  and γ , that are determined by the shear forces yD  and zD  

according to (8). Note that the torsional stiffness constant of the cross-sectional area is 
given by 
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For the determination of the coordinates of the shear centre ( ,sc scy z ) and of the values 

of the shearcoefficients , ,y yz zk k k  the elastic energy of the sheardeformation is 

calculated and put equal to the quadratic expression for this energy in terms of the 
stress resultants, such that to each of these stress resultants corresponds a dual 
deformation quantity of the elastic line model of the beam ( 2

T TI Ai= ). 
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The six independent constants in the matrix have been chosen in a way that makes a 
clear phenomenological interpretation possible. The constant 2

Ti  determines the 

torsional stiffness, ,sc scy z  determine the point through which the shear forces must go 
in order to avoid twisting of the beams (the so-called shear centre), and the other three 

constants are the shearcoefficients, that determine the average shear angles ,y zγ γ , 

produced by the shear forces ,y zD D  and by the axial moment about the geometrical 

centre of the cross-section xM . 
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In terms of the solution for the warping displacements 1X  the coordinates of the shear 
centre are given by 
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The expressions for the shear coefficients are rather complicated. Unlike the other 
quantities they have a slight dependence on Poisson’s ratio. When the bending 
deformations are uncoupled by taking the so-called principal axes, for which 0yzC = , 

as the coordinate axes, the shear deformations are in general not uncoupled. However 
for slender beams the shear deformations may be neglected compared to the bending 
deformations. We have 

    

( )
( )

( )
( )

( )
( )

2 * * 2 *
22

* 2 * *1
222

2 * * 2 *
22

,

( ) ,

,

y y y y yz yz yz z

y z yz

yz y yz y y z yz yz z yz z

y z yz

z yz y z yz yz z z

y z yz

A
k I k I C k C k

I I C

A
k I C k I I C k I C k

I I C

A
k C k I C k I k

I I C

= − +
−

= − + − −
−

= − +
−

 

where 

    

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

2* * *
2(1 ) 2(1 )2 1 1 3 4

* * * * *
2(1 )2 3 1 1 1 1 3 3

2* * *
2(1 ) 2(1 )3 1 1 3 4

1
,

1
( ) ,

1
.

T T T
y z y z y y y

T

T T T T T T
yz y z z y z z y y y z

T

T T T
z z y y z z z

T

k X b b X b X b I I
I

k X b b X b b X b X b X b X b I I
I

k X b b X b X b I I
I

ν ν
ν ν

ν
ν

ν ν
ν ν

+ +

+

+ +

= + − + +

= + + + − + + −

= + − − +

 

The solution procedure for St.Venant’s problem of beam stresses and deformations, 
described above, has been implemented in the JAVA-program BEAMS. It was 
adopted from an earlier PASCAL version, that was used by the author in his lectures 
on strength and stiffness of structures, starting in 1986. 
 
2.Elastic line model of rods and beams. 
For sufficiently slender beams and rods the local strain components will remain small 
for even large curvatures of the beam axis and for large angles of twist. Then the 
stressdistribution in a cross-section will hardly differ from the stressdistribution 
according to St.Venant’s solution of the linearized equations of the theory of 
elasticity. The beam or rod may be modelled as an elastic line with in each point 
stiffness properties derived from St.Venant’s solution. The axial strain is determined 
by the normal force N , the local curvature of the elastic line by the bending moment, 
the specific angle of twist by the axial moment, and the average shear angles by the 
shear forces and the axial moment. 
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We shall consider a beam or rod that may be represented by an elastic line along the 
central axis (i.e. the line connecting the geometrical centres of the cross-sections). In 
the reference state we take the elastic line along the x -axis of a fixed cartesian system 
with the cross-section oriented such, that the y -axis and z -axis coincide with the 

principal axes of the prismatic beam or rod ( 0yzC = ). With the unit base vectors 

, ,x y ze e e  of the fixed cartesian system the position of an undeformed elastic line 

segment of length l  is given by the radius vector ,r  

       ( ) ,0 ,0 xx s s l= + ≤ ≤r e  

while ,y ze e  determine the orientation of the principal axes of the cross-section. 

In the deformed state the change of position of a point of the elastic line is determined 
by the displacement components , ,u v w, while the rotations of the orthogonal triad 

with basevectors  x* y* z*, ,e e e  are described by means of angular coordinates , ,ψ ϑ ϕ  

in three orthogonal transformations. 
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The  radius vector in the deformed state is given by 
     0 (x ) .x y zs u v w= + + + +r e e e                                                                           (16) 

Here s is the material coordinate on the elastic line and the angular coordinates 
, ,ψ ϑ ϕ  together with the displacement components u,v,wdetermine as functions of 

this material coordinate the geometry of the elastic line in the deformed state. We can 
distinguish six deformation components, * * * * *, , , , ,y z x y zε γ γ κ κ κ , defined as follows: 
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                                                                      (17) 

Conditions under which large elastic curvatures and twist  of a beam or rod may occur 
imply for most materials that the extension of the central axis as well as the shear 
angles * *,y zγ γ  may be put equal to zero. We shall limit our discussion of the 

continuum model of the elastic line to this case. Consequently we have 
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( ) ( )

( ) ( )

2 2 2

1 1 1 1
2 2 2 2

*

*

1 0,

cos sin sin sin cos 1 cos cos sin sin sin

sin cos 0,

sin sin cos sin cos 1 sin cos cos sin sin

co

y

z

du dv dw

ds ds ds

du dv

ds ds

dw

ds
du dv

ds ds

ε

γ ψ ϕ ψ ϑ ϕ ψ ϕ ψ ϑ ϕ

ψ ϑ

γ ψ ϕ ψ ϑ ϕ ψ ϕ ψ ϑ ϕ


 � 
 � 
 �= + + + − =� � � � � �
� � � � � �


 �= − + + + + +� �
� �

+ =


 �= + + + − + +� �
� �

+ s cos 0.
dw

ds
ψ ϑ =

 

From (15) and (17) we obtain the following expression for the specific twist 

           * sin .x

d d

ds ds

ψ ϕκ ϑ= −                                                                             (18) 

 
The expressions for the curvatures of the elastic line read according to (15) and (17) 

                
*

*

cos sin cos ,

sin cos cos .

y

z

d d

ds ds
d d

ds ds

ϑ ϕκ ψ ψ ϑ

ϑ ϕκ ψ ψ ϑ

= +

= − +
                                                   (19) 

If we consider large curvatures about one of the principal axes of the cross-section, 
while the curvature and the rotation about the other principal axis remain small, then 
simplifications are possible. 

For 1ϕ <<  and 1
dv

ds
<<  we derive by linearization with respect to ϕ  and v : 

        

1 cos ,

cos ,

sin ,

du

ds

dv

ds
dw

ds

ϑ

ϕ ϑ

ϑ


 �+ =� �
� �

=

= −

     

*

*

*

sin ,

cos sin cos ,

sin cos cos .

x

y

z

d d

ds ds
d d

ds ds
d d

ds ds

ψ ϕκ ϑ

ϑ ϕκ ψ ψ ϑ

ϑ ϕκ ψ ψ ϑ

= −

= +

= − +

                       (20) 

Similarly we obtain for 1ϑ <<  and 1
dw

ds
<<  by linearization with respect to ϑ  and 

w : 

      

1 cos ,

sin ,

,

du

ds

dv

ds
dw

ds

ϕ

ϕ

ϑ


 �+ =� �
� �

=

= −

       

*

*

*

,

cos sin ,

sin cos .

x

y

z

d d

ds ds
d d

ds ds
d d

ds ds

ψ ϕκ ϑ

ϑ ϕκ ψ ψ

ϑ ϕκ ψ ψ

= −

= +

= − +

                                 (21) 

For the determination of the bifurcation points of the initially straight rod and beams it 
is sufficient to consider expressions, in which only terms up to the second degree are 
retained. 
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2 21
2 ( ),

,

,

du

ds
dv

ds
dw

ds

ϑ ϕ

ϕ

ϑ

= − +

=

= −

   

*

*

*

,

,

.

x

y

z

d d

ds ds
d d

ds ds
d d

ds ds

ψ ϕκ ϑ

ϑ ϕκ ψ

ϕ ϑκ ψ

= −

= +

= −

                                                    (22) 

However in order to settle the question of stability at a bifurcation point terms up to 
the third degree will be needed as we shall see. 
 
3. Bifurcation problems for rods and beams. 
First we consider the wellknown problem problem of the buckling of a column in the 
x-z plane  in a way that provides a basis for comparison with the finite element 
representation. 
The end conditions for the Euler column are given by 

     
0 0, 0, 0,

, 0, 0.
y

y

s u w M

s l N F w M

= � = = =

= � = − = =
                                                                       (23) 

Because we restrict the theory of the elastic line here to the case, that the elastic 
potential of the beam is bending energy, the power of the external load F is stored as 
bending energy and we have 

      
0 0

.
l l

l y y y y

d d d d d
Fu M ds EI ds M EI

ds ds ds ds ds

ϑ ϑ ϑ ϑ ϑ− = = ∀ � =� �
� � �

�                       (24) 

The equilibrium condition for the beam according to the principle of virtual power 
requires zero power for all motion in the absence of deformation. For 0ψ =  this 

condition  implies 0lu =� , while according to (20) we have two other conditions for 

zero deformation. All conditions can be expressed in terms of ϑ� : 

    

0 0

00 0

sin ,

0,

0 cos .

l l

l

l l

l

du
ds u ds

ds

d

ds
dw

ds w w ds
ds

ϑϑ

ϑ

ϑϑ

= = −

=

= − = = −

� �

� �

�
��

�

�
�� �

 

By the principle of virtual power we then have  with  yM  as a multiplier variable and 

Q  as a multiplier constant : 

    
0 0 0
sin cos .

l l l

y

d
F ds M ds Q ds

ds

ϑϑϑ ϑϑ ϑ= − ∀� � �
�

� � �                                              (25) 

Substituting (24) , linearizing and by partial integration we obtain 

          
2

20
0 .

l

y

d
EI F Q ds

ds

ϑ ϑ ϑ ϑ
 �
− + + = ∀� �
� �

� � �  

Here the end conditions (22) have been taken into account. From the variational 
condition we derive 

     
2

2
0.y

d
EI F Q

ds

ϑ ϑ+ − =                                                                                   (26) 

The solution of the differential equation (26), 
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      ( ) ( )1 2cos sin ,s s Q Fϑ ϑ µ ϑ µ= + +
� �

   2 ,
y

F

EI
µ =  

must satisfy the end conditions 

      
0

0: 0, : 0, 0.
l

y y y y

d d
s M EI s l M EI ds

ds ds

ϑ ϑ ϑ= = = = = = =�  

The eigenvalue µ  then follows from the requirement that the homogeneous equations 

      

( )

1

2

0 0 0

sin cos 0 0

1 1 0
sin 1 cos

l l

Q
l l l F

ϑµ
µ µ µ µ ϑ

µ µ
µ µ

� �
� �
� �
− =� �
� �
� �−
� �� �

�

�
 

must have a nontrivial solution. We derive 

     2 sin 0 ,l l lµ µ µ π= � =        2 0,ϑ =
�

   / 0.Q F =  
Hence the bifurcation solution is given by 

   
2

2
2

,y
c y

EI
F EI

l

π
µ= =      1 cos ,c sϑ ϑ µ=

�
      0, 0.c cu Q= =                             (27) 

In their linearized form the bifurcation equations do not give an indication about the 
stability at the bifurcation point. By keeping terms up to the third degree in the 
equilibrium condition we can determine the change of F  with the amplitude of the 

bifurcation ϑ
�

. We put 

     

,

cos( ),

0.

r
cF F F

s

Q

ϑ ϑ µ
= +

=
=

�
                                                                                           (28) 

Linearizing with respect to the perturbations and taking into account the terms in ϑ
�

 
up to the third degree we obtain from (25) the variational equilibrium condition: 

                [ ( )( )31
6

0
0 .

l r
y c

d d
E I F F ds

ds ds

ϑ ϑ ϑ ϑ ϑ ϑ�− + − = ∀��
�

� �  

Substituting (28) we have 

( ){ }2 2 2 3 41
6

0 0 0
sin ( ) cos ( ) cos ( ) 0 .

l l lr
y cEI s ds F F s ds s dsµ ϑ µ ϑ µ ϑ µ ϑ ϑ� �− + + = ∀

� �� �� � �
� � � � �� �  

The result, 

              21
8 ,r

cF F ϑ=
�

                                                                                       (29) 
shows the stability of the Euler column at the bifurcation point, because 

              21
8 .c cF F F Fϑ= + >=

�
 

 
As a second example, for which the comparison between the continuum approach and 
the finite element model has been made, we shall discuss the lateral buckling of the 
end-loaded cantilever beam in the case that the curvature *yκ  may be put equal to 

zero. 
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*

* *

* *

0 0 0

cos sin 0,

sin cos ,

,

.

y

z z z z

x T x T

l l

d d

ds ds
d d

M EI EI
ds ds

d d
M GI GI

ds ds

dw
w ds ds

ds

ϑ ϕκ ψ ψ

ϑ ϕκ ψ ψ

ψ ϕκ ϑ

ϑ

= + =


 �= = − +� �
� �


 �= = −� �
� �

= − =� �

                                            (30) 

By the principle of virtual power we have the following equilibrium condition, in 
which we have simplified the expression for *zκ  with the aid of the condition for *yκ . 

 

  
0

0 0

1 1

cos cos

cos sin 0 , , .

l

z T

l l

d d d d d d d d
EI GI ds

ds dt ds ds ds dt ds ds

d d d
M ds F ds

dt ds ds

ϕ ϕ ψ ϕ ψ ϕϑ ϑ
ψ ψ

ϑ ϕψ ψ ϑ ψ ϕ ϑ

� �
 � 
 � 
 �+ − − +� �� � � � � �
� � � �� �� �


 �+ + + = ∀� �
� �

�

� � � �� �

 

 
 
The multiplier M  is of course the bending moment, against which the beam is 
considered to be infinitely stiff. Linearizing and by partial integration we obtain 

  

2 2

2 20

0 0 00
0 , , .

l

z T

l ll l

z T

d dM d d d
EI M GI M ds

ds ds ds ds ds

dM d d
F ds EI M GI M

ds ds ds

ϕ ψ ψ ϕψ ϕ ψ

ϕ ψϑ ψ ϕ ψ ϑ ψ ϑ ϕ

� �
 � 
 �
− − − + − + +� �� � � �
� � � �� �


 � 
 �+ − + + + + + = ∀� � � �
� � � �

�

�

��

� � �� �� �

 (31) 

Acoording to (30) and (31) we derive 

  ,
dM

F
ds

=   0: 0 ,s M M Fs= = � =  

  
2

2
0 0,z z

d d d
EI F Fs EI Fs

ds ds ds

ϕ ψ ϕψ ψ+ + = � + =  

  
2 2 2 2

2 2
0 0,T

z T

d d d F s
GI Fs

ds ds ds EI GI

ψ ϕ ψ ψ− = � + =  

2 2 2 2 2 2
4 8 12

1 1 ......
3.4 3.4 7.8 3.4 7.811.12

λ λ λ λ λ λψ ψ ξ ξ ξ
 �
� = − + − + +� �

� �

�
 

           
2 2 2 2 2 2

5 9 13
2 ..... ,

4.5 4.5 8.9 4.5 8.912.13

λ λ λ λ λ λψ ξ ξ ξ ξ
 �
− + − +� �

� �

�
 

     
2 4

2 ,
z T

F l

EI GI
λ =   ,

s

l
ξ =   ,T

z

GI

EI
α =  

     0: 0,
d

ds

ψξ = =    1: 0,ξ ψ= =   2
2 0, 16.10096,cψ λ� = =�
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     0: 0,
d

d

ϕξ
ξ

= =    1: 0.ξ ϕ= =                                                                                (32) 

{ }1
2

2 2 2 2 2 2
2 4 8 121 1 1 1

2 3 5 71 1 .... 0.3117614
3.4 3.4 7.8 3.4 7.811.12

c c c c c c
c

λ λ λ λ λ λϕ α λ ψ ξ ξ ξ ξ� �
� = − + − + −� �

� �

�

Again in their linearized form the bifurcation equations do not give an indication 
about the stability at the bifurcation point. However with 

   
1 1 31

3cos sin 0
d d d d d

d d
ds ds d ds dsξ ξ

ϑ ϕ ϑ ϕ ϕψ ψ ϑ ξ ψ ψ ξ
ξ


 �+ = � = − = − − −� �
� �

� �  

the stability coefficient is readily obtained from (31) and (32) by numerical integration if 
the bifurcation mode is substituted and terms up to the third degree in 1ψ�  are retained. 
From 

    
1 2 21 1

2 2
0

d d d d d
d

d d d d d

ϕ ϕ ϕ ϕ ϕψ ψ ψ ψ ξ
ξ ξ ξ ξ ξ


 �
 �
+ + + +� �� �

� �� �
�

� �
�  

    +
1

2

21 1

0 0
0 , , ,

z T

d d d d d Fl
d d

d d d d d EI GI

ψ ϕ ψ ϕ ϕα ϑ ϑ ϑ ξ α ϑ ξ ψ ϑ ϕ
ξ ξ ξ ξ ξ


 �
 �
− − − + = ∀� �� �

� �� �
� �

� �
� � �� �  

 
we obtain 

   2 2
1 12

1 (0.263 0.635) 0.423 ,z T
c

EI GI
F F

l
λ α ψ ψ� �= + + −� �

� �
 

or, for 

   2 2
1 12

( ) ( ),z T
c c

EI GI
F O F O

l
λ ψ ψ= + = +� �

 

              2
11 (0.263 0.212) .cF F α ψ� �= + +� �
�

                                                             (33) 

This result matches the result given in [1]. 
 
4.Finite element model of rods and beams. 
The interface of finite elements, based upon the elastic line concept, is a nodal point. 
The location of these nodal points and the orientation of an orthogonal triad, rigidly 
attached to each nodal point, can be given by the position vector with components 

i i ix uξ= +  and by the orthogonal transformation with components *i jR , which 

transforms a vector in the ix − system into a vector with respect to the local triad at the 
nodal point. For modified angular coordinates of Euler this transformation is defined 
in (15), but for the description of arbitrarily large rotations in finite element programs 
the four Euler parameters (which have to satisfy one condition, leaving three 
independent parameters) are to be preferred. 
The six deformation parameters or generalized strains for an initially straight bar 
connection nodal points p and q were define in [2]. Their geometrical meaning is 
indicated in Fig.3. 
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     Fig.3 Generalized strains of bar element between nodal points p and q. 
 
The six generalized strains can be expressed as analytic functions of the 2x6=12 nodal 
coordinates of the bar element e: 
             ( ).e e

i i kD uε =                                                                                                (34)  

Since the generalized strains of Fig.3 are defined with respect to orthogonal triads, 
oriented according to the bar-axis and the principal axes of its cross-section, we need 
the orthogonal matrix *ki ki

R R= , which determines in the deformed and in the 
undeformed structure the orientation of the bar-axis and of the cross-sectional plane 
with reference to the local triads at the nodal points. The functions (34) for the 

generalized strains of Fig.3 can now be written as follows ( ( )( )2 p q p q
i i i il ξ ξ ξ ξ= − − ): 

     ( )( ) 2
1

1

2
p q p q p q p q

i i i i i i i iu u u u l
l

ε ξ ξ ξ ξ� �= − + − − + − − +� �  

                           ( )2 2 2 2
3 3 4 4 5 5 6 6

1
2 2 2 2 ,

30l
ε ε ε ε ε ε ε ε+ + + + +  

     1
22 * * * * * * * * ,p q p q

zi i j jk k y yi i j jk k zl R R R R R R R Rε � �= −� �  

      

( )
( )
( )

( )

3 * *

4 * *

5 * *

6 * *

,

,

,

.

p q p q p
zi i j j j j j

q q p q p
zi i j j j j j

p q p q p
yi i j j j j j

q q p q p
yi i j j j j j

R R u u

R R u u

R R u u

R R u u

ε ξ ξ

ε ξ ξ

ε ξ ξ

ε ξ ξ

= − − + −

= − + −

= − + −

= − − + −

                                                                  (35) 

The introduction of the quadratic terms in the bending deformations into the 
longitudinal deformation, first introduced in [4], make these expressions much more 
effective in a nonlinear analysis. In particular the number of finite elements needed to 
obtain a certain accuracy in a buckling analysis is drastically reduced by these terms, 
which give a contribution to the constant values of the second derivatives, decisive for 
the buckling phenomena. 
If  the deformations e

iε  remain sufficiently small (| e
iε |<<l), then in the elastic range 

they are linearly related to a normal force 1σ , a twisting moment 2σ  and four bending 

moments 3 4 5 6, , ,σ σ σ σ  by a symmetric matrix of elasticity coefficents. 

        ( )0 .e e e e
i ij i iSσ ε ε= −                                                                                        (36) 

Here we introduced initial deformations 0e
iε  to represent inelastic strains, or simply 

misfits in the perfect, undeformed structure ( 0ku = ). For a prismatic bar with the y- 
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and z-axis in a cross-section along the principal axes the elasticity coefficients are 
given by the matrix 

   

1

2

3 3

3 3

4 4

4 4

0 0 0 0 0

0 0 0 0 0

0 0 4 2 0 0

0 0 2 4 0 0

0 0 0 0 4 2

0 0 0 0 2 4

e

S

S

S S
S

S S

S S

S S

� �
� �
� �
� �−

= � �−� �
� �−
� �

−� �� �

,                                                      (37) 

with 

           
1

3 3

,

,y

EA
S

l
EI

S
l

=

=
      

2 3

4 3

,

.

T

z

GI
S

l
EI

S
l

=

=
 

Here, like in par.2, the shear deformation has been neglected. If  by means of a shear 
stiffness, a shear angle in the x z−  plane is taken into account by a shear deformation 
coefficient derived from St.Venant’s solution of the stress problem, the submatrix 
with  3S  has to be replaced by 

        3
4(1 3 ) 2(1 6 )

2(1 6 ) 4(1 3 )1 12

S β β
β ββ

+ − −� �
� �− − ++ � �

,          
2

.
2(1 )

yIk

l A
β

ν
=

+
                            (38) 

As the expression for  shows, the contribution of the shear deformation can in 
general  be neglected, because if 2

yl A I>>  does not hold the elastic line model of the 

rod or beam is questionable. It is not difficult however to take into account all elastic 
energy corresponding to St.Venant’s solution of the stress problem. Then, in 
accordance with (13), the stiffness matrix S is the inverse of the flexibility matrix F, 
given below. 

         

3

23 23 25 25

3 3

23 33 33 35 35

3 3

23 33 33 35 35

3 3

25 35 35 55 55

3 3

25 35 35 55 55

0 0 0 0 0

0

0
3 6

0
6 3

0
3 6

0
6 3

T

y y

y y

z z

z z

l

EA

l

GI

l l

EI EI
F

l l

EI EI

l l

EI EI

l l

EI EI

β β β β

β β β β β

β β β β β

β β β β β

β β β β β

� �
� �
� �
� �− −� �
� �
� �+ − −� �
� �= � �

− − + −� �
� �
� �
� �− + −
� �
� �
� �− − − +� �� �� �

 

 
where 
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2

23

2

33 2 2

,

,

sc

T

sc

T

y l

GI

yl
k

GA i

β

β

=


 �
= +� �

� �

    

2

25

2

35 12 55 12 2

,

,      .

sc

T

sc sc sc

T T

z l

GI

y z zl l
k k

GA i GA i

β

β β

=


 � 
 �
= − = +� � � �

� � � �

   

It is clear from the corrective terms  that   the coupling due to the excentricity of the 
shear centre ( ,sc scy z ) will have an influence rather than the other terms, if this 
excentricity is large. But this will be the case for open thin-walled cross-sections, for 
which the warping disturbance at the end points will again  make the elastic line 
model questionable.    
The generalized strains (34) possess the proper invariance with respect to rigid body 
movements of the bar element. However they are complicated functions of the nodal 
coordinates ku . Since the value of the derivatives of these functions in the initial, 

undeformed state of the structure ( 0ku = ) can easily be determined, in [2] the power 

series expansion was considered ( 0 0iD = ). 

   0 0 01 1 1
2 6 24, , , , ...i i k k i kl k l í klm k l m i klmn k l m nD D u D u u D u u u D u u u u= + + + +   .                       (39) 

In [2] the values of the derivatives 0
,i kD  up to 0

,i klmnD  are given. 

The finite element model given here has been implemented in a JAVA-computer 
program SPFRAME  for the static, kinematic and dynamic analysis of trusses and 
beam structures. This program was derived from an earlier PASCAL version (1987), 
that was used by the author for the instruction of students. 
 
5.Finite element representation of bifurcation problems. 
From the principle of virtual power we have for arbitrarily kinematically admissible 

ku�  

        , .k k i i i i k k kf u D u uσ ε σ= = ∀�� � �  

Hence the equations of equilibrium for the external forces on the structure read 
       , .k i i kf Dσ=                                                                                                        (40) 

The multipliers iσ  are the generalized stresses, for an elastic material according to 
(36) determined by  

        ( ) ( )0 0 .i ij j j ij i iS S Dσ ε ε ε= − = −                                                                       (41) 

Substitution of the series expansion (39) leads to equations with the following terms 
up to the fourth degree in ku : 

0 0 0 0 01 1 1
2 6 24, , , , ,

0 0 0 0 0 01 1 1
2 6 24, , , , ,

0 0 0 0 01 1
2 2, , , , ,

i k ij j l l j lm l m j lmn l m n j lmno l m n o

i k i kl l i klm l m i klmn l m n i klmno l m n o ij j

i kl ij j m l m i kl ij j mn l m n i klm

D S D u D u u D u u u D u u u u

D D u D u u D u u u D u u u u S

D S D u u D S D u u u D

ε

� �+ + + +� �

� �− + + + + +� �

+ + + 0
,

0 0 0 01 1
6 6, , , , ....... .

ij j n l m n

i klmn ij j o l m n o i kl ij j mno l m n o k

S D u u u

D S D u u u u D S D u u u u f

+

+ + + =

            (42) 

For a loading 1
kfλ  we can solve the linearized equations 

     0 0 1 1
, , ,i k ij j l l kD S D u f=      0 0 0 0 0

, , , .i k ij j l l i k ij jD S D u D S ε=                                                      (43) 

Let 

     1 0 1
, ,i i j j k kS D uσ =           ( )0 0 0 0

, ,i ij j k k jS D uσ ε= −  
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then 0
iσ  are the initial generalized stresses, 0

ku  are the geometrical imperfections of 

the structure, and 1
iσ  are the generalized stresses in equilibrium with the loads 1

kf  
according to the linear theory. 
In order that the solution of the linearized equations would satisfy the nonlinear 
equations rigorously, it would be required that 
     0 1 0 1 1

, ,0, 0, .i kl l i klm l mD u D u u etc= = , 

and                                                                                                                           (44 
      0 0 0 0 0

, ,0, 0, .i kl l i klm l mD u D u u etc= =  

Though in general this condition can only be approximately fulfilled for certain loads, 
the approximation can then be sufficiently close to consider the solution of the 
linearized equations as the fundamental state of deformation. However, this 
fundamental state of deformation need not be the only significant solution of the 
nonlinear equations. 
If we substitute into the nonlinear equations a solution of the form 
      1 0 ,k k k ku u u uλ= + + ∆  

then, as a consequence of  (44) all terms linear in ku∆  disappear except the following 

     ( )0 0 1 0 0
, , , 0.i k ij j l i i i kl lD S D D uλσ σ� �+ + ∆ =� �                                                              (45) 

But these equations may have nontrivial solutions ( 0ku∆ ≠ ) for certain values of λ . 

The lowest value of λ  for which the determinant of the matrix of coefficients in (45) 
is equal to zero (the lowest so-called eigenvalue) determines the buckling load of the 
structure. 
The pure buckling phenomenon, characterized by a bifurcation of equilibrium states 
such as determined by eqs. (45), is a rather rare possibility. But in real structures 
under actual loading conditions and with geometrical imperfections the underlined 
terms in (42), which are responsible for the bifurcation phenomenon under the 
idealized conditions (44), play a predominant role in a perturbation analysis of the 
nonlinear equations. 
An effective perturbation procedure is based upon the eigenvectors of the following 
eigenvalue problem: 
      ,p p p

kl l kl lK e G eλ= −  where  0 0 1 0
, , ,, .kl i k ij j l kl i i klK D S D G Dσ= =                               (46) 

Let there be r eigenvalues pλ  of finite value. We collect these eigenvalues and the 
associated eigenvectors in matrices with the following elements: 
       p

kp kE e=   and  ,p
pq pqλ δΛ =    1,2,3,...., .p r=                                              (47) 

For normalized eigenvectors 
        ,kp kl lq pqE G E δ= −    .kp kl lq pqE K E = Λ                                                             (48) 

Now we express the nodal coordinate changes as follows: 
        1 0 ,r

k k k kp p ku u u E uλ ξ= + + +    0.r
kp kl lE G u =                                                    (49) 

Equilibrium in terms of the principle of virtual power requires 

       ( ) ( )0 1
, , 0 .r r

i k ij j j k p kp k p k pD S D f E u uε λ ξ ξ� � � �− − + + = ∀� � � �
� ��  

The r
ku�  must, apart from being kinematically admissible, satisfy the orthogonality 

conditions, 0r
k kl lpu G E =� . 
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The big gain of the perturbation analysis, considered here, is restricted to the case that 
the equilibrium equations stemming from r

ku�  may be linearized with respect to r
ku . 

Then with terms to the second degree in pξ  we can solve *
ku  from 

    

( )
( )( ) ( ){ }

( )

* 0 0 1 0 0 0
, ,

0 0 1 0 1 0 1 01
2 , ,

0 0 1 0 01
2, , ,

2

..... 0

kl l i i kl l l i i kl lp p

i k ij j lm l l m m l l mp p lp mq p q

lp i kl ij j m mq p q lp mq i i i klm p q

K u D u u D E

D S D u u u u u u E E E

E D S D E E E D

σ λ σ ξ

λ λ λ ξ ξ ξ

ξ ξ λσ σ ξ ξ

+ + + +

�+ + + + + + +�

�+ + + + =�

   (50) 

 
Since r

ku  must satisfy the orthogonality condition in (49) the proper solution for r
ku  is 

given by 

       ( ) * .r
k kl kp mp ml lu E E G uδ= +                                                                                (51) 

We define 

       ( ){ ( ) ( )0 0 1 0 1 0 1 01
2, , 2r r

i ij j k k ij j kl k k l l k k lp pS D u S D u u u u u u Eσ λ λ λ ξ= + + + + + +   

                                                                                                  }.kp lq p qE E ξ ξ+      (52) 

Now we obtain the nonlinear equations for pξ  withλ  as an independent loading 

parameter by considering the rates pξ�  in the principle of virtual power. 

( ) ( ) ( )
( )

( ) ( ) {
} {

1 0 0 1 0
,

0 0 0 0
, ,

1 0 0 1 0 0 01
2, , , ,

0 0 0 01
6 , , , ,

r
kp i i i i kl l l pq pq p

r r
kp lq i i i kl q kp i i kl l

r r
k p i i i kl l kp l l i kl ij j mn mq nr q r

j mno mq nr os q r s kp i k ij j lm mq kp i kl

E D u u

E E D E D u

u D u E u u D S D E E

D E E E E D S D E E D S

λσ σ σ λ λδ ξ

σ σ ξ σ

λσ σ λ ξ ξ

ξ ξ ξ

+ + + + Λ − +

+ + + +

+ + + + +

+ + +

( ) } {
( ) } {

0
,

1 0 0 0 0 0 01
2, , , , ,

1 0 0 0 01 1
2 6, , ,

0 0 11 1
2 6, ,

ij j m mq

r
kp mq i i i klm l q kp i k ij j lm lq mr kp lq i kl ij j m mr

kp lq mr i i i klm q r kp i k ij j lmn lq mr ns

kp lq mr i klm ij j n ns kp lq mr ns i

D E

E E D u E D S D E E E E D S D E

E E E D E D S D E E E

E E E D S D E E E E E

λσ σ ξ

λσ σ ξ ξ

λσ

+

+ + + + +

+ + + +

+ + ( ) }0 0
, 0.i i klmn q r sDσ ξ ξ ξ+ =

(53) 

Here only terms up to the third degree in pξ  have been retained. 

The participation factors pξ  of the eigenvectors  p
ke  will be relatively small as long as 

the load factor is far enough away from the corresponding eigenvalues pλ . As a 
consequence in eqs.(53) only the participation factors for the eigenvalues close to λ  
need to be considered. Then in practical applications only a few nonlinear equations 
have to be solved in a nonlinear analysis, even for structures with a very large number 
of nodal coordinates. 
Just as in the continuum approach of par.3 in the finite element representation of the 
Euler column only the first eigenvalue and eigenvector have to be taken into account 
for the determination of the stability coefficient. Since the linearized problem for the 
centrally loaded strut is so-called statically determinate the matrix of 0

,i kD  is a square, 

invertible matrix, and from (51),(52),(53) we obtain  

{
}

1 1 1 10 0 1 1 2 0 0 1 0 0 11
2 , , 1 , , , ,

1 1 1 0 21
2 , 1 ,

r N B
k i k i lm l m i k ij j l l p lm pq q n n

m n p p lmn

u D D ee D S D e D S D e

e e D

ξ

λσ ξ

− − − −
� � � � � � � �= − − +� � � � � � � �

+
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1 10 1 0 0 1 2 0 1 1 1 0 21
2, , , 1 , , 1 ,r B

i i k l p kl pq q m m i k l m p p klmD e D S D e D ee Dσ ξ λσ ξ
− −

� � � �= − −� � � �  

 

( ) 11 1 1 0 0 1 0 0 1 3
1 , , , , 1

11 1 0 0 1 1 1 0 3
, , , 1

1 11 1 0 0 1 1 0 0 1 0 31
2 , , , , , 1

1 0 0 1 1 1 32 1
3 , , 1

2 B
k l i kl i m n p mn pq q o o

k l i kl i m n o p p mno

k l i kl i m n o j no j p q q mp

B
k i k ij j lmn l m n

e e D D e D S D e

e e D D e e D

e e D D e e D D D

e D S D ee e

λ λ ξ ξ

λσ ξ

λσ ξ

ξ

−

−

− −

� �− − +� �

� �− +� �

� � � �+ +� � � �

+ + 1 0 1 1 1 1 3
6 , 1 0.i i klmn k l m nD e ee eλσ ξ =

                                          (54) 

Here N
ijS   denotes that part of the stiffness matrix that is determined by 1S  and B

ijS  is 

the part defined by 3S . 

In the expression for r
ku  the terms with 

1N
ijS

−
� �� �  are small as compared to the first 

term, but in the expression (52) for r
iσ  the contribution of this first term cancels, 

while even for 1S → ∞  the other terms give a finite contribution because of the 

multiplication by N
ijS . In the last equation in (54) the terms with 

1N
ijS

−
� �� � , due to the 

substitution of  r
ku  in (53), could be neglected. 

In order to gain some insight in the expressions (54), and to make a comparison 
between the continuum approach and the finite element representation we shall 
introduce a notation, in which in the case of the Euler column the axial components u  
of the nodal displacements will be denoted by Latin indices, ku , and the nodal 

deflections and rotations by Greek indices, uα . 
First we note that in the case of an inextensional axis we have instead of  (49) 

       
,

.

r
k k

kp p

u u

u Eα ξ
=
=

                                                                                                         (55) 

The axial components of the displacements can now be expressed in terms of 1ξ  and 
1eα  with the aid of the expression for the  axial deformation, N

i iDε = . 

    0 0 1 1 2 0 0 1 11 1 1
2 2 6, , 1 , ,3.N r r r r

i i k k i i kl k l i k kD D u D e e D u u D u e eαβ α β αβ α βξ= + + + +  

                                                                             0 1 1 1 1 41
24 1 ..... 0.D e e e eαβγδ α β γ δξ + =  

Since 0
,i kD� �� �  in the case of the Euler column is a square non-singular matrix we find 

with terms up to the fourth degree in 1ξ : 

   
[1 10 0 1 1 2 0 1 1 0 0 1 1 41 1

2 4, , 1 , , , 1

1 10 1 1 1 1 4 1 1 0 0 1 1 0 0 0 41 1
24 8, 1 , , , , , 1 .

r
k i k i i l j l j

i p p l q q m i lm

u D D e e D e e D D e e

D e e e e e e D D e e D D D

αβ α β αβ α β γδ γ δ

αβγδ α β γ δ α β αβ γ δ γδ

ξ ξ

ξ ξ

− −

− −

� � � �= − − +� � � �

� � � � �+ + � � � � �

             (56) 

If we substitute expression (56) into the equilibrium condition 

     ( )1 1
, ,1 , ,1 0,r B r

i k k i ij j k kD u D e S D f uα α λ+ − =  

and if we observe that 

      
10 1 1

, ,i k k iD f σ
−

� � =� �  

then again the last equation in (54) is obtained. 
We can also, like in the continuum model of par.3, take the inextensibility condition, 

0,N
iD =  into account as a subsidiary condition with the aid of a vector of multipliers 
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iσ . We can express by the inextensibility condition the displacement rates ku�  in the 
flexibility and rotation rates: 

         
1

, , , ,0 .N N N N
i k k i k i k iD u D u u D D uα α α α

−
� �+ = � = − � �� � � �  

Analogous to (25) we have according to the principle of virtual power 

    
( )

( )
1

, , , ,

1 11
, , , , , , 0 .

N B
i k p k p i ij j

N N N N
i i k p k p i k i k i

D D D D S D u

D D D D u f D D u u

α α α

α α α α α ασ λ

−

− −

� �− + +� �

� � � �+ − + + = ∀� � � �

�

� � �

 

The linearized bifurcation equations read 

     ( )

11 0 1 1 0 1
, ,

0 0 1 1 0 1
, , ,

0
,

,

0,

0 0.

i i k k i i k k

B
i ij j i i

i k k k

D f D f

D S D D e

D u u

α β αβ β

λσ λ σ

λ σ

−
� �= � = � �

+ =

= � =

                                                        (57) 

Next we consider the bifurcations 

     

( )1 3
1 1

1

,

,

.

r
k k

r
i i i

u e O

u u

α αξ ξ

σ λσ σ

= +

=

= +
 

We derive with terms up to the second degree in 1ξ  : 

      
[

10 0 1 1 21
2 , , 1

10 1 0 1 1 2 1 0 0 1 21
2, , 1 , , 1

,

.

r
k i k i

r B
i i k p p k p k pq q

u D D e e

D D e e e D S D e

αβ α β

αβ α β α α β β

ξ

σ λσ ξ ξ

−

−

� �= − � �

� � �= − +� � �

 

Finally it is required that the virtual power equation, including the subsidiary 
condition, is satisfied for arbitrary 1ξ� . The equation with terms up to the third degree 

in 1ξ , that follows from the condition 

      

( ) (
) ( )(
)

1 0 1 0 0 1 1 1 3 0 1 0 11 1
2 2, , , 1 , 1 , 1

0 1 1 1 3 1 0 0 1 1 0 0 1 11
6 , 1 , ,1 , 1 , ,1 , 1

0 1 1 2 11
2 , ,1 1 ,

2.r B r
i i k k i ij j j l l

r r r r r
j i i i k k i i kl k l i k k

r
i k k k k

e D e D u D e e e S D e D u e

D e e e D u D e e D u u D u e e

D u e e f u

α α α α αβγ α β γ β β β β

αβγ α β γ αβ α β αβ α β

αβ α β

ξ ξ ξ

ξ λσ σ ξ ξ

ξ λ

� + + + +�

+ + + + + +

− 1 1 10 ,r ξ ξ� = ∀�
� �

 

is again identical to the last equation in (54). We recall that this equation was derived 
for a large, but finite stiffness against elongation of the column axis.  
In the analysis of the continuum elastic line model as well as in the finite element 
analysis the stability problem could be solved even for the case of an inextensible 
column axis, because of the fact that the normal force and its first perturbation is 
statically determinate. A similar situation arises in the lateral buckling case of the end-
loaded cantilever beam. Here in addition to the inextensibility condition a condition of 
zero curvature about a principal axis of the cross-section is taken into account, either 
directly or with the aid of the bending moment about this axis as lagrangian 
multiplier. This bending moment is also statically determinate in the example of 
lateral buckling considered in par.3. 
The distribution of primary stresses (N in the case of the Euler column, N and M in the 
case of the end-loaded cantilever beam) can in other cases be statically indeterminate. 
Then there is only a well posed stability problem if the stiffness against these stresses 
is finite and the stability coefficient will depend largely on the redistribution of the 
primary stresses during buckling. This redistribution of stress can be determined by a 
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model with a number of finite elements that is small as compared to the number of 
elements required to take the kinematical restraints into account with sufficient 
accuracy in the case of the Euler column and of the end-loaded cantilever beam. As it 
has been shown in [3] in these cases 16 elements were needed for a result with a 2% 
accuracy. The explanation for the fact, that in the case of statical indeterminacy a 
much smaller number of elements is needed to obtain this kind of accuracy, is given 
by the observation that all terms of the third degree,  appearing in the last equation in 
(54), can usually be neglected because much larger terms of the third degree appear. 
These terms no longer cancel against each other in the case of statical indeterminacy. 
 
Concluding remarks. 
The classical subject of the theory of elastic beams and rods has received a practically 
important addition in the formulation of a finite element representation. Now 
nonlinear problems can be solved by straightforward desk computations. 
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